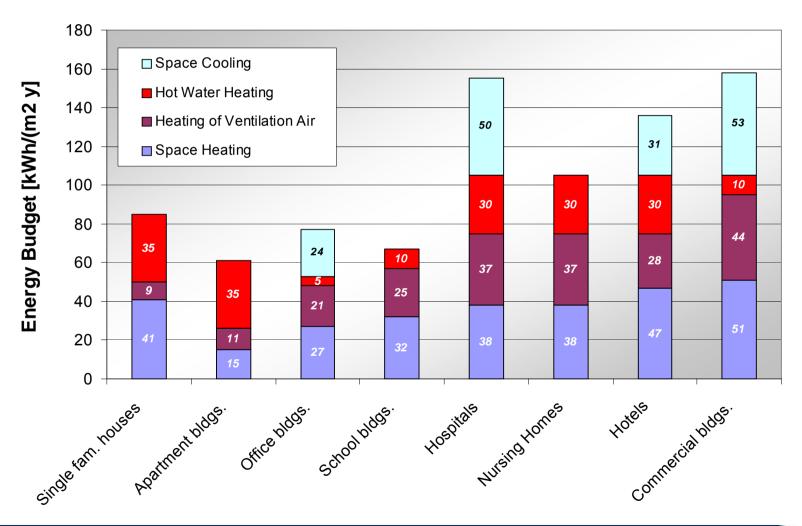

### The Directorate of Public Construction and Property SINTEF Energy Research – Dept. Energy Processes


## CO<sub>2</sub> Heat Pumps for Heating and Cooling of Non-Residential Buildings





#### **Proposal for New Building Codes (2006)**

Energy Demand in Buildings – Total Energy Budget [kWh/(m²y)]







## Heat Pumps for Heating and Cooling of Non-Residential Bldgs.

- The annual heating demand is covered with high energy efficiency
  - Seasonal Performance Factor (SPF\*) > 3-4
- A large share of the annual cooling demand is supplied as a by-product of the heat production from the heat pump or covered by free cooling:
  - Sea water
  - Ground water
  - Energy wells in rock thermal energy storage

\* SPF = 
$$\frac{Q_{delivered}}{E_{supplied}}$$





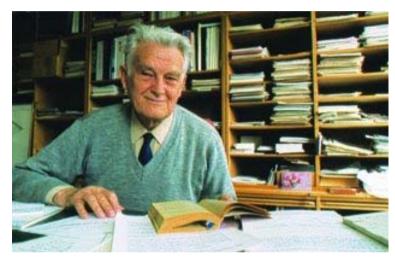




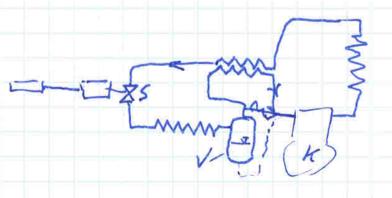


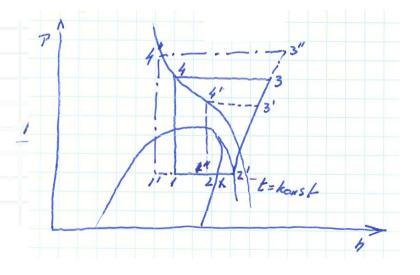


#### CO<sub>2</sub> Used as a Working Fluid




CO<sub>2</sub> (R744) used in refrigeration and AC systems up to approx. 1950




#### CO<sub>2</sub> Used as a Working Fluid



- Reintroduced by professorGustav Lorentzen (1915-1995)
- First patent on a transcritical
  CO<sub>2</sub> system in November 1988



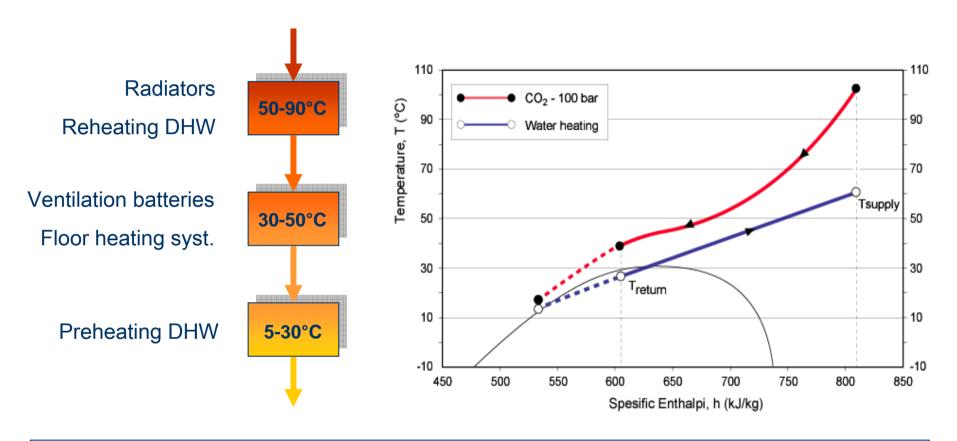




#### Carbon Dioxide (CO<sub>2</sub>)



Summary of Main Properties and Characteristics


- Low critical temp. (31.1°C) high critical pressure (73.8 bar)
  - Heat rejection at supercritial pressure → transcritical heat pump cycle
  - High pressures at evaporation and heat rejection (25 to 150 bar)
- Moderate molar weight (44.01) very high gas density
  - Compressor volume only 10 to 25% of conventional compressors
  - Small dimensions on heat exchangers and tubing
- Favourable thermophysical properties
  - Excellent heat transfer → low temp. differences in heat exchangers
  - Low pressure ratio → high compressor efficiency
- Other properties
  - $\blacksquare$  ODP=0, GWP=0  $\rightarrow$  no negative impact on the global environment
  - Non-flammable, non-toxic, odourless, inert, stabile → safe fluid

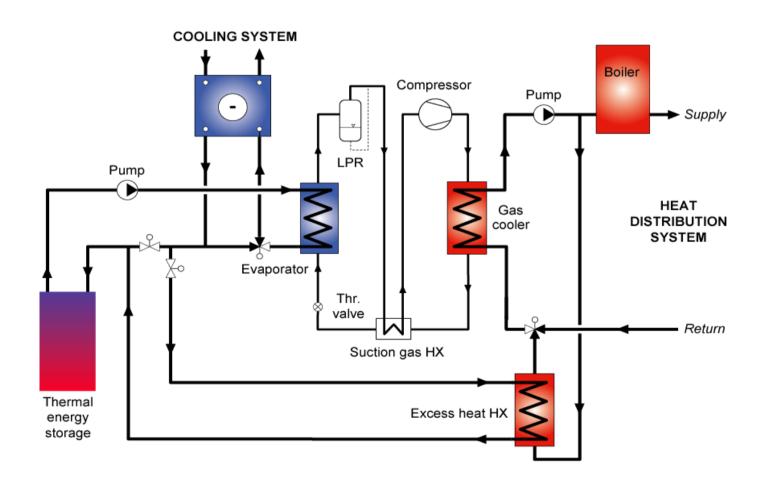




#### CO<sub>2</sub> Heat Pumps in Non-Residential Bldgs.

Heat Rejection Process in a Temperature-Enthalpy Diagram




Falling return temperature in the heat distribution system increases the COP for the  $CO_2$  heat pump  $\Rightarrow$  Serial connection of heat loads at falling temp. levels





#### **Example of CO<sub>2</sub> Heat Pump System**


Combined Heating and Cooling – Use of Thermal Energy Storage





#### CO<sub>2</sub> Heat Pump Water Heater

Manufactured by Denso Corporation Ltd., Japan (2001-2002)







- Hot water heating
- Ambient air as heat source
- 4.5 kW heating capacity
- 85°C hot water temperature
- The world's first commercial
  CO<sub>2</sub> heat pump
- CO<sub>2</sub> technology developed at NTNU-SINTEF, Trondheim
- Shecco Technology<sup>™</sup> has exclusive licence rights to the CO<sub>2</sub> technology patents





#### Integrated CO<sub>2</sub> Heat Pump

"EcoCute" - Manufactured by Denso Corporation Ltd., Japan







- Space heating & hot water heating
- Ambient air as heat source
- 6.0 kW heating capacity
- 65/90°C hot water temperature
- 200,000 units sold in 2003/2004
- CO<sub>2</sub> technology developed at NTNU-SINTEF, Trondheim
- Shecco Technology<sup>™</sup> has exclusive licence rights to the CO<sub>2</sub> technology patents





#### CO<sub>2</sub> Heat Pumps in Non-Residential Bldgs.

Environmental Benefits – Technical Benefits/Challenges

- CO<sub>2</sub> environmentally benign and safe
- May achieve higher SPF than conventional heat pumps
  - Requires a relatively low <u>return</u> temp. in the heat distribution system
    - Serial connection of radiators and ventilation batteries is required
    - The operating time of the ventilation system is a critical parameter
    - A large hot water demand is favourable
  - Possible to increase the energy efficiency by applying special system design and components, e.g. replacing the throttling valve with an ejector
- No temperature limits when supplying heat
  - Can supply heat to high temperature hot water systems (<95°C)</li>
  - Can supply heat to high temperature radiators (80-90°C)





# 排座完毕 谢您.!